Neuro-Oncololgy Advances: The effects of palbociclib in combination with radiation in preclinical models of aggressive meningioma (Houghton)

Background

Meningiomas are the most common tumor arising within the cranium of adults. Despite surgical resection and radiotherapy, many meningiomas invade the brain, and many recur, often repeatedly. To date, no chemotherapy has proven effective against such tumors. Thus, there is an urgent need for chemotherapeutic options for treating meningiomas, especially those that enhance radiotherapy. Palbociclib is an inhibitor of cyclin-dependent kinases 4 and 6 that has been shown to enhance radiotherapy in preclinical models of other cancers, is well-tolerated in patients, and is used to treat malignancies elsewhere in the body. We, therefore, sought to determine its therapeutic potential in preclinical models of meningioma.

Methods

Patient-derived meningioma cells were tested in vitro and in vivo with combinations of palbociclib and radiation. Outputs included cell viability, apoptosis, clonogenicity, engrafted mouse survival, and analysis of engrafted tumor tissues after therapy.

Results

We found that palbociclib was highly potent against p16-deficient, Rb-intact CH157 and IOMM-Lee meningioma cells in vitro, but was ineffective against p16-intact, Rb-deficient SF8295 meningioma cells. Palbociclib also enhanced the in vitro efficacy of radiotherapy when used against p16-deficient meningioma, as indicated by cell viability and clonogenic assays. In vivo, the combination of palbociclib and radiation extended the survival of mice bearing orthotopic p16 deficient meningioma xenografts, relative to each as a monotherapy.

Conclusions

These data suggest that palbociclib could be repurposed to treat patients with p16-deficient, Rb-intact meningiomas and that a clinical trial in combination with radiation therapy merits consideration.

Read Full Text

__________________________________________________________

Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to the understanding of its causes, and accelerate the translation of knowledge into novel therapies. Through discovery, development, and dissemination of new scientific knowledge, Greehey CCRI strives to have a national and global impact on childhood cancer. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on FacebookTwitterLinkedIn, and Instagram.

_________________________________________________________

Article Categories: Research Paper

Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.