Carcinogenesis: Candidate gene association analysis of acute lymphoblastic leukemia identifies new susceptibility locus at 11p15 (LMO1)

Abstract

To determine the contribution of susceptibility loci in explaining the genetic basis of acute lymphoblastic leukemia (ALL), we genotyped 29 high-potential candidate genes with 672 tagged single-nucleotide polymorphisms (SNPs) in a sample (163 cases and 251 healthy controls) of Caucasian children. Fifty SNPs in 15 genes were significantly associated with ALL risk at the P < 0.05 level. After correction for multiple testing, rs442264 within the LIM domain only 1 (LMO1) gene at 11p15 remained significant [odds ratio (OR) = 1.90, P = 3 × 10(-5)]. In addition, a major haplotype within LMO1 comprising 14 SNPs with individual risk associations was found to significantly increase ALL risk (OR = 1.79, P = 0.0006). Stratified analysis on subtype indicated that risk associations of LMO1 variants are significant in children with precursor B-cell leukemia. These data show that genetic variants within LMO1 are associated with ALL and identify this gene as a strong candidate for precursor B-cell leukemogenesis.

Learn More Button

Article Categories: All News, Research Paper

Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.