PNAS: Interaction between microRNAs and actin-associated protein Arpc5 regulates translational suppression during male germ cell differentiation

Yao-Fu ChangJennifer S. Lee-ChangJ. Saadi ImamKalyan Chakravarthy BuddavarapuSarah S. SubaranAmiya P. Sinha-HikimMyriam Gorospe, and Manjeet K. Rao

Abstract

Decoupling of transcription and translation during postmeiotic germ cell differentiation is critical for successful spermatogenesis. Here we establish that the interaction between microRNAs and actin-associated protein Arpc5 sets the stage for an elaborate translational control mechanism by facilitating the sequestration of germ cell mRNAs into translationally inert ribonucleoprotein particles until they are later translated. Our studies reveal that loss of microRNA-dependent regulation of Arpc5, which controls the distribution of germ cell mRNAs between translationally active and inactive pools, results in abnormal round spermatid differentiation and impaired fertility. Interestingly, Arpc5 functions as a broadly acting translational suppressor, as it inhibits translation initiation by blocking 80S formation and facilitates the transport of mRNAs to chromatoid/P bodies. These findings identify a unique role for actin-associated proteins in translational regulation and suggest that mRNA-specific and general translational control mechanisms work in tandem to regulate critical germ cell differentiation events and diverse somatic cell functions.

Learn More Button

Article Categories: All News, Research Paper

Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.