IEEE: Cancer Progression Prediction Using Gene Interaction Regularized Elastic Net.
Abstract:
Different types of genomic aberration may simultaneously contribute to tumorigenesis. To obtain a more accurate prognostic assessment to guide therapeutic regimen choice for cancer patients, the heterogeneous multi-omics data should be integrated harmoniously, which can often be difficult. For this purpose, we propose a Gene Interaction Regularized Elastic Net (GIREN) model that predicts clinical outcomes by integrating multiple data types. GIREN conveniently embraces both gene measurements and gene-gene interaction information under an elastic net formulation, enforcing structure sparsity, and the “grouping effect” in solution to select the discriminate features with prognostic value. An iterative gradient descent algorithm is also developed to solve the model with regularized optimization. GIREN was applied to human ovarian cancer and breast cancer datasets obtained from The Cancer Genome Atlas, respectively. The result shows that the proposed GIREN algorithm obtained more accurate and robust performance over competing algorithms (LASSO, Elastic Net, and Semi-supervised PCA, with or without average pathway expression features) in predicting cancer progression on both two datasets in terms of median area under the curve (AUC) and interquartile range (IQR), suggesting a promising direction for more effective integration of gene measurement and gene interaction information.
Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.
Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.