Molecular Cancer Research: ELF4 is a target of miR-124 and promotes neuroblastoma proliferation and undifferentiated state

Adam Kosti, Liqin Du, Haridha Shivram, Mei Qiao, Suzanne Burns, Juan Gabriel Garcia, Alexander Pertsemlidis, Vishwanath R Iyer, Erzsebet Kokovay, Luiz OF Penalva

13-Cis-retinoic acid (RA) is typically used in postremission maintenance therapy in patients with neuroblastoma. However, side effects and recurrence are often observed. We investigated the use of miRNAs as a strategy to replace RA as promoters of differentiation. miR-124 was identified as the top candidate in a functional screen. Genomic target analysis indicated that repression of a network of transcription factors (TF) could be mediating most of the miR-1249s effect in driving differentiation. To advance miR-124 mimic use in therapy and better define its mechanism of action, a high-throughput siRNA morphologic screen focusing on its TF targets was conducted and ELF4 was identified as a leading candidate for miR-124 repression. By altering its expression levels, we showed that ELF4 maintains neuroblastoma in an undifferentiated state and promotes proliferation. Moreover, ELF4 transgenic expression was able …

Learn More Button

Article Categories: All News, Research Paper

Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.