Development: The murine intestinal stem cells are highly sensitive to the modulation of the T3/TRα1-dependent pathway (Penalva Lab)

Matthias GodartCarla FrauDiana FarhatMaria Virginia GiolitoCatherine JamardClementine Le NevéJean-Noel FreundLuiz O. PenalvaMaria SirakovMichelina Plateroti

Abstract

The thyroid hormone T3 and its nuclear receptor TRα1 control gut development and homeostasis through the modulation of intestinal crypt cell proliferation. Despite increasing data, in-depth analysis on their specific action on intestinal stem cells is lacking.

By using ex vivo 3D organoid cultures and molecular approaches we observed early responses to T3 involving the T3-metabolizing enzyme Dio1 and the transporter Mct10, accompanied by a complex response of stem cell- and progenitor-enriched genes. Interestingly, specific TRα1 loss-of-function (inducible or constitutive) was responsible for low ex vivo organoid development and impaired stem cell activity. T3-treatment of animals in vivo not only confirmed the positive action of this hormone on crypt cell proliferation but also demonstrated its key action in modulating i) the number of the stem cells, ii) the expression of their specific markers and iii) the commitment of progenitors into lineage-specific differentiation.

In conclusion, T3 treatment or TRα1 modulation has a rapid and strong effect on intestinal stem cells, broadening our perspectives in the study of T3/TRα1-dependent signaling in these cells.

Read Full Text

Article Categories: Research Paper

Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.