Frontiers in Molecular Biosciences: The Role of Human Centromeric RNA in Chromosome StabilityThe Role of Human Centromeric RNA in Chromosome Stability (Kitagawa Lab)


Accurate chromosome segregation is fundamental for cell division. Errors in this process can lead to chromosome instability, leading to aneuploidy, which is correlated with cancer (Zhu et al., 2011Santaguida and Amon, 2015). The centromere is a component of each chromosome used for accurate chromosome segregation. The kinetochore, the structure responsible for binding the chromosome to spindle microtubules and for chromosome movement during cell division, is assembled on the centromere (Van Hooser et al., 2001). The identity and inheritance of the centromere are thought to be determined epigenetically by the deposition of the species-specific histone 3 variant CENH3 (CENP-A in mammals, CID in D. melanogaster, and Cse4 in S. cerevisiae) nucleosomes interspersed with classical Histone 3 nucleosomes (Blower et al., 2002Fukagawa and Earnshaw, 2014Niikura et al., 2016). The centromere of the budding yeast S. cerevisiae consists of a 100 nucleotides DNA sequence motif and is referred to as a point centromere (Pluta et al., 1995). In all other eukaryotes, centromeres are composed of repetitive DNA sequences on several hundred kilobases, referred to as regional centromeres (Pluta et al., 1995). Furthermore, the DNA composition of each centromere presents a high variation between each chromosome (Eichler, 1999Melters et al., 2013). The “centromere paradox” refers to how highly diverse centromere sequences are, even in closely related eukaryotes (Eichler, 1999). Human centromeres are composed of α-satellite repeated tandemly to form a block of satellites, called higher-order repeat (HOR) that are composed of a set number of monomers that vary from 2 to 34 (Willard, 1985Willard et al., 1986Alexandrov et al., 1993McNulty et al., 2017). Despite the repetitive sequences composing the centromere, this region is transcriptionally active, with the transcription of genes in rice (Nagaki et al., 2004Mizuno et al., 2011). For other organisms, centromeric DNA encodes for siRNA (Grishok et al., 2000Volpe et al., 2002Zilberman et al., 2003Fukagawa et al., 2004Pal-Bhadra et al., 2004) and long non-coding RNA called cenRNA (Wong et al., 2007Carone et al., 2009).

Read Full Text




Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to the understanding of its causes, and accelerate the translation of knowledge into novel therapies. Through discovery, development, and dissemination of new scientific knowledge, Greehey CCRI strives to have a national and global impact on childhood cancer. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on FacebookTwitterLinkedIn, and Instagram.



Article Categories: Research Paper