International Journal of Molecular Sciences: A Comprehensive Analysis into the Therapeutic Application of Natural Products as SIRT6 Modulators in Alzheimer’s Disease, Aging, Cancer, Inflammation, and Diabetes (Rao Lab)

Share this Story

Raushanara Akter 1, Afrina Afrose 1, Md Rashidur Rahman 2, Rakhi Chowdhury 1, Saif Shahriar Rahman Nirzhor 3, Rubayat Islam Khan 4, Md Tanvir Kabir 1


Natural products have long been used as drugs to treat a wide array of human diseases. The lead compounds discovered from natural sources are used as novel templates for developing more potent and safer drugs. Natural products produce biological activity by binding with biological macromolecules since natural products complement the protein-binding sites and natural product-protein interactions are already optimized in nature. Sirtuin 6 (SIRT6) is an NAD+ dependent histone deacetylase enzyme and a unique Sirtuin family member. It plays a crucial role in different molecular pathways linked to DNA repair, tumorigenesis, glycolysis, gluconeogenesis, neurodegeneration, cardiac hypertrophic responses, etc. Thus, it has emerged as an exciting target of several diseases such as cancer, neurodegenerative diseases, aging, diabetes, metabolic disorder, and heart disease. Recent studies have shown that natural compounds can act as modulators of SIRT6. In the current review, a list of natural products, their sources, and their mechanisms of SIRT6 activity modulation have been compiled. The potential application of these naturally occurring SIRT6 modulators in the amelioration of major human diseases such as Alzheimer’s disease, aging, diabetes, inflammation, and cancer has also been delineated. Natural products such as isoquercetin, luteolin, and cyanidin act as SIRT6 activators, whereas vitexin, catechin, scutellarin, fucoidan, etc. work as SIRT6 inhibitors. It is noteworthy to mention that quercetin acts as both an SIRT6 activator and inhibitor depending on its concentration used. Although none of them were found as highly selective and potent modulators of SIRT6, they could serve as the starting point for developing selective and highly potent scaffolds for SIRT6.

Read Full Text




Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to the understanding of its causes, and accelerate the translation of knowledge into novel therapies. Through discovery, development, and dissemination of new scientific knowledge, Greehey CCRI strives to have a national and global impact on childhood cancer. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on FacebookTwitterLinkedIn, and Instagram.


Article Categories: Featured news, Research Paper