Molecular Cancer Therapeutics: Vertical Inhibition of the RAF-MEK-ERK Cascade Induces Myogenic Differentiation, Apoptosis and Tumor Regression in H/NRAS Q61X-mutant Rhabdomyosarcoma (Houghton, Chen, Ignatius, Vaseva)
Abstract
Oncogenic RAS signaling is an attractive target for fusion-negative rhabdomyosarcoma (FN-RMS). Our study validates the role of the ERK MAPK effector pathway in mediating RAS dependency in a panel of H/NRASQ61X-mutant RMS cells and correlates in vivo efficacy of the MEK inhibitor trametinib with pharmacodynamics of ERK activity. A screen is used to identify trametinib-sensitizing targets and combinations are evaluated in cells and tumor xenografts. We find that the ERK MAPK pathway is central to H/NRASQ61X-dependency in RMS cells, however, there is poor in vivo response to clinically relevant exposures with trametinib, which correlates with inefficient suppression of ERK activity. CRISPR screening points to vertical inhibition of the RAF-MEK-ERK cascade by co-suppression of MEK and either CRAF or ERK. CRAF is central to rebound pathway activation following MEK or ERK inhibition. Concurrent CRAF suppression and MEK or ERK inhibition, or concurrent pan-RAF and MEK/ERK inhibition (pan-RAFi + MEKi/ERKi), or concurrent MEK and ERK inhibition (MEKi + ERKi) all synergistically block ERK activity and induce myogenic differentiation and apoptosis. In vivo assessment of pan-RAFi + ERKi or MEKi + ERKi potently suppress the growth of H/NRASQ61X RMS tumor xenografts, with pan-RAFi + ERKi being more effective and better tolerated. We conclude that CRAF reactivation limits the activity of single-agent MEK/ERK inhibitors in FN-RMS. Vertical targeting of the RAF-MEK-ERK cascade, and particularly co-targeting of CRAF and MEK or ERK, or the combination of pan-RAF inhibitors with MEK or ERK inhibitors, have synergistic activity and potently suppress H/NRASQ61X-mutant RMS tumor growth.
__________________________________________________________
Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to the understanding of its causes, and accelerate the translation of knowledge into novel therapies. Through discovery, development, and dissemination of new scientific knowledge, Greehey CCRI strives to have a national and global impact on childhood cancer. Our mission consists of three key areas — research, clinical, and education.
Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.
Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.
Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.