Journal of the American Chemical Society: ights into Molecular Diversity within the FUS/EWS/TAF15 Protein Family: Unraveling Phase Separation of the N-Terminal Low-Complexity Domain from RNA-Binding Protein EWS (Libich Lab)
Abstract
The FET protein family, comprising FUS, EWS, and TAF15, plays crucial roles in mRNA maturation, transcriptional regulation, and DNA damage response. Clinically, they are linked to Ewing family tumors and neurodegenerative diseases such as amyotrophic lateral sclerosis. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses a portion of the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion protein modifies transcriptional programs and disrupts native EWS functions, such as splicing. The exact role of the intrinsically disordered EWSLCD remains a topic of active investigation, but its ability to phase separate and form biomolecular condensates is believed to be central to EWS::FLI1’s oncogenic properties. Here, we used paramagnetic relaxation enhancement NMR, microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of the EWSLCD. Our NMR data and mutational analysis suggest that a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. MD simulations revealed that the tyrosine-rich termini exhibit compact conformations with unique contact networks and provided critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular). These findings enhance our understanding of FET proteins’ condensate-forming capabilities and underline differences between EWS, FUS, and TAF15.
Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.
Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.