Alexander J. R. Bishop, D.Phil
Rank: Professor
Department: Cell Systems & Anatomy
Programmatic Member: Molecular Medicine
Office: 3.100.14
Tel: 210.562.9060
bishopa@uthscsa.eduEmail
Our research focus
“My lab focuses on DNA damage response and DNA repair, with a particular interest in Ewing sarcoma, breast cancer, and Ataxia telangiectasia. My lab uses various methods; genetics, molecular biology, cell biology, and mouse models (genetic and tumor models). Of my 50+ peer-reviewed publications, half are on DNA repair, particularly homologous recombination. Over the last 20 years, I expanded my research program to use genomic level approaches to facilitate my research interests, from microarray analyses to genome-wide RNAi screening and then many genomic sequencing technologies. We have also developed significant expertise in R-loops biology and how it relates to DNA repair and replication. Importantly we established key techniques to evaluate R-loops, including DRIPseq and RNAPII ChIPseq. The relationship between these various endeavors and expertise is most apparent in the work we published about a year ago (Nature 2018) outlining the transcriptional dysregulation in Ewing sarcoma, another recently published paper where we contributed the R-loop analyses for ETMR (Nature, 2019). Another collaborative project examining R-loops in rDNA and how they function to maintain phase separation of nucleolar bodies (and how they are disrupted in Ewing sarcoma) was just accepted for publication at Nature (2020).
I have a particular interest in the ATM/p53/BRCA1 damage response pathway and how it relates to the control of homologous recombination and cancers. Towards this end, we have a tremendous set of resources to evaluate DNA repair and damage responses, expertise in RNAi, gene expression, ChIP, protein interactions, transcription stress, bioinformatics, and some metabolomics to apply to this problem. We have also developed an expertise in NRF2 biology and demonstrated how this pathway is key for preventing unfolded protein response induced cell death in response to alkylation damage.
Since becoming an independent investigator, I have trained six postdoctoral fellows, all of whom remained in science, four of whom are continuing their academic careers, two now tenured, and one is currently a non-tenure track Assistant Professor. One postdoc is pursuing additional training while yet another joined a biotech company. Two additional postdoctoral fellows are currently under training. I have taken a special interest in advancing postdoctoral fellows through their careers. Since coming to UT Health –San Antonio, I have developed a postdoctoral career workshop. I am a member of a Departmental Committee to promote postdoctoral career advancement and, most recently, initiated a Departmental Postdoctoral Seminar Series. Therefore, I am a strong advocate for finding means for postdoctoral fellows to achieve their career goals.
I have also been fortunate enough to have recruited several talented graduate students, six have now graduated, and all pursued further research careers in either academia or private industry. I am currently training four graduate students. Over the last few years, two of my graduate students and two of my postdocs benefited from this CPRIT training grant. In contrast, four of my graduate students obtained independent funding (including the DoD BRCP program and PCRCP Horizon Award), as did three of my postdocs (including DoD BCRP and AstraZeneca-AACR START). I am therefore wholly committed to being a co-Investigator for this CPRIT training grant, thus facilitating training young scientists and seeing them succeed in their careers.”
Learn more about the Bishop Lab from their external site.