Kurmasheva Lab

Dr. Kurmasheva and staff

Raushan Kurmasheva, PhD

Rank: Assistant Professor
Department: Molecular Medicine
Office: 4.100.18
Tel: 210.562.9155

The overall focus of our lab is to improve the treatment of childhood sarcoma. We currently work on understanding the mechanisms of resistance of Ewing sarcoma cells to PARP1 inhibition with the ultimate goal of developing more effective and less toxic therapy for Ewing sarcoma patients. Another project in which the lab is involved identifies novel drugs and drug combinations to treat pediatric sarcoma and renal tumors. This project is a part of the Pediatric Preclinical Testing Consortium (PPTC) that has been recently funded by NCI.

Faculty Profile: Raushan Kurmasheva, PhD

Lab Research

Our Expertise

  • Preclinical Therapeutics
  • DNA damage and repair
  • PARP Inhibition
  • DNA replication
  • Pediatric Solid Tumors
  • Ewing Sarcoma
  • PDX
  • IGF-1R-mTOR Signaling

DNA Damage in Ewing Sarcoma Therapy

Ewing sarcoma is the fourth most common highly malignant childhood cancer, defined by a tumor-specific chromosomal translocation. In approximately 85% of all tumors, the EWSR1 gene on chromosome 22 fused to a member of the E26 transformation-specific sequence (ETS) family of transcription factors, the FLI1 gene on chromosome 11. In the remaining 15% of Ewing tumors, the EWSR1 fused to other members of the ETS family, mostly the ERG gene on chromosome 21. DNA damage induced by expression of the EWSR1-FLI1 fusion gene is potentiated by PARP1 inhibition in Ewing cells, where EWSR1-FLI1 genes act in a positive feedback loop to maintain the expression of PARP1. The overall lab focus is to determine the differences between the tumors that respond to treatment with PARP1 inhibitor and those intrinsically resistant to it and to understand the underlying mechanisms of such resistance.

Studies by the Pediatric Preclinical Testing Program and others have shown that Ewing sarcoma cell lines are hypersensitive to inhibitors of poly-ADP ribose polymerase1 (PARP1), an enzyme involved in DNA repair, which can potentiate low-level damage to DNA in approximately 50% of Ewing sarcoma models. More than 90% of these tumors are characterized by a chromosomal translocation between chromosomes 11 and 22, which results in oncogenic chimeric transcription factor EWSR1-FLI1. Such genomic rearrangements compromise cell survival, leading to specific defects in cellular metabolism – ‘synthetic lethal’ interactions – that can be exploited therapeutically. Our lab investigation attempts to elucidate why Ewing sarcoma cells are either sensitive or resistant to combinations of PARP1 inhibitors and DNA damage. We are applying single-cell RNA sequencing and CyTOF approaches to better understand the dependence of these cells on PARP1 or ATR pathways, and to determine the correlation between EWSR1-FLI1 expression in individual cells and response to DNA replication stress. We employ molecular and structural biology techniques to understand how two major DNA repair pathways – BER and MGMT – work together to repair damage induced by chemotherapeutic agents like temozolomide. Preclinically, we use nanoformulations of drugs to deliver the cytotoxic agents directly to the tumor site without causing systemic toxicity. Both targeted (antibody-based) and passive (EPR-based) nanoparticle delivery approaches are developing. We apply this knowledge to improve the efficacy of the drug combinations in mice to develop novel and enhanced the therapy of Ewing sarcoma.

The Pediatric Preclinical Testing Consortium (PPTC) – Sarcoma and Renal Tumors

Project f is developing more effective and less toxic therapy for pediatric solid tumors by combining novel cytotoxic agents, or signaling inhibitors with cytotoxic agents or ionizing radiation. This project is a continuation of the ten years of testing within PPTP, where over 80 drugs have been tested in 50 models of childhood solid tumors, and identified novel drugs and drug combinations that are now in the clinical trial.

Greehey CCRI Xenograft and Cell Lines Core

A GCCRI-based Xenograft and Cell Lines Core provides the service of preclinical testing of chemotherapeutics and combinations in mouse models. This Core is available to the UT Health San Antonio research community, the pharmaceutical companies, and any lab interested in conducting animal research. The methods used for performing testing and analysis of the data were established in PPTP (Establishment of human tumor xenografts in immunodeficient mice. Morton CL, Houghton PJ., Nat Protoc. 2007;2(2):247-50; (Molecular characterization of the pediatric preclinical testing panel. Neale G, Su X, Morton CL, Phelps D, Gorlick R, et al. Clin Cancer Res. 2008 Jul 5;14(14):4572-83).

The team is highly skilled in conducting in vivo studies, including dose-response, toxicity testing, single-agent, and combination efficacy testing, and pharmacodynamic studies. We have developed a biobank of a broad range of solid pediatric tumor xenograft models, including patient- and cell-derived models. For most of these, we also carry matching cell lines.

The Xenograft and Cell Lines Core, directed by Dr. Raushan Kurmasheva, is an integral part of the Greehey CCRI vision of developing better therapies for children with cancer.

Dr. Raushan Kurmasheva
Greehey Children’s Cancer Research Institute
UT Health San Antonio
8403 Floyd Curl Dr., MC 7784
San Antonio, TX 78229


  • “Advances in Personalized Medicine” (MMED5001) Course (Co-Direct with Dr. Michael Wargovich, Course Director)
  • Lecture “Development of PDX models of mice.”


  • Designated Animal Research Officer (DARO)
  • Institutional Committee Appointments Committee
  • UTHSA DNA Repair Group Organizing Committee
  • Greehey CCRI Seminar Series Organizing Committee
  • Greehey CCRI Equipment Committee


The Director of the UT Health San Antonio Cancer Center Dr. Ruben Mesa congratulated Dr. Kurmasheva on being selected by the Circle of Hope (#5) for funding of her project studying mechanisms of resistance to PARP1 inhibition in Ewing sarcoma. Dr. Mesa noted that the donors “were inspired by the clinical need for these children and the great work of you and your colleagues at the GCCRI.”

Information About the Circle of Hope