European Urology: Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer

Michael A Liss 1James Robert White 2Martin Goros 3Jonathan Gelfond 3Robin Leach 4Teresa Johnson-Pais 4Zhao Lai 5Elizabeth Rourke 4Joseph Basler 4Donna Ankerst 4Dimpy P Shah 3

Abstract

Background: The fecal microbiome is associated with prostate cancer risk factors (obesity, inflammation) and can metabolize and produce various products that may influence cancer but have yet to be defined in prostate cancer.

Objective: To investigate gut bacterial diversity, identify specific metabolic pathways associated with a disease, and develop a microbiome risk profile for prostate cancer.

Design, setting, and participants: After prospective collection of 133 rectal swab samples 2 wk before the transrectal prostate biopsy, we performed 16S rRNA amplicon sequencing on 105 samples (64 with cancer, 41 without cancer). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was applied to infer functional categories associated with the taxonomic composition. The p values were adjusted using the false discovery rate. The α- and β-diversity analyses were performed using QIIME. The Mann-Whitney U test was employed to evaluate the statistical significance of β-diversity distances within and between groups of interest, and the least absolute shrinkage and selection operator (LASSO) regression analysis was used to determine pathway significance.

Outcome measurements and statistical analysis: The detection of prostate cancer on transrectal prostate needle biopsy and 16s microbiome profile.

Results and limitations: We identified significant associations between total community composition and cancer/non-cancer status (Bray-Curtis distance metric, p<0.01). We identified significant differences in the enrichment of Bacteroides and Streptococcus species in cancer (all p<0.04). Folate (LDA 3.8) and arginine (LDA 4.1) were the most significantly altered pathways. We formed a novel microbiome-derived risk factor for prostate cancer based on 10 aberrant metabolic pathways (area under curve=0.64, p=0.02).

Conclusions: Microbiome analyses on men undergoing prostate biopsy noted mostly similar bacterial species diversity among men diagnosed with and without prostate cancer. The microbiome may have subtle influences on prostate cancer but are likely patient-specific and would require paired analysis and precise manipulation, such as improvement of natural bacterial folate production.

Patient summary: Microbiome evaluation may provide patients with personalized data regarding the presence or absence of particular bacteria that have metabolic functions and implications regarding prostate cancer risk. The study provides a basis to investigate the manipulation of aberrant microbiomes to reduce prostate cancer risk.

Keywords: B vitamins; Biomarker; Biotin; Folate; Microbiome; Prostate cancer.

Learn More Button

Article Categories: All News, PR Stories, Research Paper

Since 2004, UT Health San Antonio, Greehey Children’s Cancer Research Institute’s (Greehey CCRI) mission has been to advance scientific knowledge relevant to childhood cancer, contribute to understanding its causes, and accelerate the translation of knowledge into novel therapies. Greehey CCRI strives to have a national and global impact on childhood cancer by discovering, developing, and disseminating new scientific knowledge. Our mission consists of three key areas — research, clinical, and education.

Stay connected with the Greehey CCRI on Facebook, Twitter, LinkedIn, and Instagram.